Description:1.The Australian Therapeutic Goods Administration (TGA) and the European Commission approved dapagliflozin in October and November 2012, respectively, as an adjunct to diet and exercise for the treatment of type 2 diabetes. Dapagliflozin is a potentially attractive therapy due to its glucosesensitive and insulin-independent mechanism of action. It is a first-in-class selective SGLT2 inhibitor (IC50=1.1 nM; selectivity vs. SGLT1 >1000) that lowers the renal threshold for reabsorption of glucose, allowing excess glucose to be eliminated via the kidneys. In normal rats, administration of dapagliflozin promotes dose-dependent excretion of up to 1900 mg of glucose over a 24 h period, with amaximal effect at 3 mg/kg. In a ratmodel of diabetes, pretreatment with the pancreatic toxin streptozotocin results in hyperglycemia that is reduced 55% by administration of a single 0.1 mg/kg dose of dapagliflozin compared with vehicle. Aryl O-glucoside SGLT2 inhibitors were early entrants into the clinic, but the aryl C-glucoside linkage found in dapagliflozin confers resistance to glucosidase-mediated metabolism leading to improved clinical utility relative to aryl O-glucosides. The modified carbohydrate–aglycone linkage required concomitant adjustment from an ortho- to a meta-substituted arylglucoside to achieve potent SGLT2 inhibition. Dapagliflozin was synthesized in several steps via reaction of an aryllithium with per-silylated gluconolactone to form the key C-glucoside linkage. An alpha-selective reduction of the resultant anomeric glycoside gave the desired beta-Carylglucoside. The main circulating (inactive) metabolite is the result of 3-O-glucuronidation of the glucosylmoiety. Of the minority metabolites, the main oxidative species result from O-dealkylation of the ethoxy-group and hydroxylation of the biarylmethane moiety.
2. Inhibiting renal glucose reabsorbtion through the sodium-glucose cotransporter (SGLT) offers an insulin-independent alternative to controlling blood glucose concentrations in patients with type 2 diabetes. While the majority of glucose is reabsorbed from glomerular filtrate by SGLT2, which is predominantly expressed in the kidney S1 segment of the proximal tubule, SGLT1 reabsorbs glucose in the distal S3 segment of the renal proximal tubule as well as from the small intestine. Dapagliflozin is a first generation, selective SGLT inhibitor that blocks glucose transport with about 100-fold selectivity for SGLT2 (Ki = 6 nM; EC50 = 1.1 nM) over SGLT1 (Ki = 390 nM). After single oral doses ranging from 0.1 to 1.0 mg/kg, dapagliflozin increases urinary glucose excretion in both normal and diabetic rats, improves glucose tolerance in normal rats, and reduces hyperglycemia in Zucker diabetic fatty rats. Within two weeks of treating diabetic rats with 0.1 to 1.0 mg/kg dapagliflozin, fasting and fed glucose levels have been shown to be significantly lowered as a result of increased glucose utilization accompanied by reduced glucose production.
Uses:1.A sodium-glucose transporter 2 inhibitor.
2. therapeutic for diabetes I or II, and hyperglycemia
Reviews
There are no reviews yet.